Regulation of clathrin coat assembly by Eps15 homology domain–mediated interactions during endocytosis

نویسندگان

  • Ryohei Suzuki
  • Junko Y. Toshima
  • Jiro Toshima
چکیده

Clathrin-mediated endocytosis involves a coordinated series of molecular events regulated by interactions among a variety of proteins and lipids through specific domains. One such domain is the Eps15 homology (EH) domain, a highly conserved protein-protein interaction domain present in a number of proteins distributed from yeast to mammals. Several lines of evidence suggest that the yeast EH domain-containing proteins Pan1p, End3p, and Ede1p play important roles during endocytosis. Although genetic and cell-biological studies of these proteins suggested a role for the EH domains in clathrin-mediated endocytosis, it was unclear how they regulate clathrin coat assembly. To explore the role of the EH domain in yeast endocytosis, we mutated those of Pan1p, End3p, or Ede1p, respectively, and examined the effects of single, double, or triple mutation on clathrin coat assembly. We found that mutations of the EH domain caused a defect of cargo internalization and a delay of clathrin coat assembly but had no effect on assembly of the actin patch. We also demonstrated functional redundancy among the EH domains of Pan1p, End3p, and Ede1p for endocytosis. Of interest, the dynamics of several endocytic proteins were differentially affected by various EH domain mutations, suggesting functional diversity of each EH domain.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Eps15 homology domain-NPF motif interactions regulate clathrin coat assembly during synaptic vesicle recycling.

Although genetic and biochemical studies suggest a role for Eps15 homology domain containing proteins in clathrin-mediated endocytosis, the specific functions of these proteins have been elusive. Eps15 is found at the growing edges of clathrin-coated pits, leading to the hypothesis that it participates in the formation of coated vesicles. We have evaluated this hypothesis by examining the effec...

متن کامل

Transient Fcho1/2⋅Eps15/R⋅AP-2 Nanoclusters Prime the AP-2 Clathrin Adaptor for Cargo Binding

Clathrin-coated vesicles form by rapid assembly of discrete coat constituents into a cargo-sorting lattice. How the sequential phases of coat construction are choreographed is unclear, but transient protein-protein interactions mediated by short interaction motifs are pivotal. We show that arrayed Asp-Pro-Phe (DPF) motifs within the early-arriving endocytic pioneers Eps15/R are differentially d...

متن کامل

Eps15 membrane-binding and -bending activity acts redundantly with Fcho1 during clathrin-mediated endocytosis

Clathrin coat assembly on membranes requires cytosolic adaptors and accessory proteins, which bridge triskeleons with the lipid bilayer and stabilize lattice architecture throughout the process of vesicle formation. In Caenorhabditis elegans, the prototypical AP-2 adaptor complex, which is activated by the accessory factor Fcho1 at the plasma membrane, is dispensable during embryogenesis, enabl...

متن کامل

Epsin 1 Undergoes Nucleocytosolic Shuttling and Its Eps15 Interactor Nh2-Terminal Homology (Enth) Domain, Structurally Similar to Armadillo and Heat Repeats, Interacts with the Transcription Factor Promyelocytic Leukemia Zn2+ Finger Protein (Plzf)

Epsin (Eps15 interactor) is a cytosolic protein involved in clathrin-mediated endocytosis via its direct interactions with clathrin, the clathrin adaptor AP-2, and Eps15. The NH(2)-terminal portion of epsin contains a phylogenetically conserved module of unknown function, known as the ENTH domain (epsin NH(2)-terminal homology domain). We have now solved the crystal structure of rat epsin 1 ENT...

متن کامل

Pan1p, Yeast eps15, Functions as a Multivalent Adaptor That Coordinates Protein–Protein Interactions Essential for Endocytosis

A genetic screen for factors required for endocytosis in the budding yeast Saccharomyces cerevisiae previously identified PAN1. Pan1p is a homologue of the mammalian protein eps15, which has been implicated in endocytosis by virtue of its association with the plasma membrane clathrin adaptor complex AP-2. Pan1p contains two eps15 homology (EH) domains, a protein-protein interaction motif also p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 23  شماره 

صفحات  -

تاریخ انتشار 2012